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Adsorption of a diatomic molecular fluid into random porous media
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Structural and thermodynamic properties of a homonuclear hard dumbbell fluid adsorbed into a disordered
hard sphere matrix are studied by means of integral equation techniques and computer simulation. In particular,
we have rewritten the replica Ornstein-Zernike equations to deal with orientational degrees of freedom and we
have solved them in two different approaches: the hypernetted chain equation and a semiempirical extension of
Verlet's approximation. We have also derived direct expressions to calculate the chemical potential in these
approximations. Comparison with grand canonical Monte Carlo results shows that both theoretical treatments
describe adequately the physical behavior of the system, Verlet's approach being, however, clearly superior in
accordance with previous findings for equilibrated hard core mixtures.
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[. INTRODUCTION one hasn noninteracting replicas of the fluid. This equiva-
lence is only fulfilled in the limit of vanishing number of
The behavior of a fluid confined in a porous material hageplicas, i.e.,n—0. It is then possible to write down
been since long a problem of interest both from the theoretOrnstein-Zerike equations for this new annealed
ical and experimental standpoint. In particular, the phase dignt 1)-component system and, once the limit 0 is taken,
gram of confined fluids can present peculiarities due to th Rrg)e;)v i?éﬁ;ﬁ%‘fjat#)hnfsdErgéegqgéﬁgﬁgcsol?;@fjti'v?{hzgrcge
effects qf the d|sorder,_ the finite pore sizé and pore geo_me}r lety of closure relations' constructed via similar procedures,
and obviously adsorption phenomena will also play a signifi-

. . . will describe the correlation function@nd hence the ther-
cant role in the physics of these systems. Phase SeDarat'orﬁ%dynamic}; of our quenched-annealed mixture. Simula-

Wetting transitions, and the shift in the I_ocat|on of the phasgjgng’of guenched hard sphere matrices with hard sphere flu-
boundaries are key aspects to be considered. ids adsorbe(i7], have shown that simple approximations like
A variety of experiments have been carried out to studythe hypernetted chaifHNC) and Percus-YevickPY) equa-
these phenomena using different techniques. For instancgons are already remarkably accurate. Recently, a more so-
the phase transitions in G@onfined in Vycor glas§l], or  phisticated closure implementing thermodynamic and struc-
the capillary condensation of Nin the same substral®]  tural consistencies—zero separatiédSEP closure—has
have been successfully studied through positron/positroniuralso been applied to the same systi8h obtaining more
annihilation. Recently, adsorbed, Mas also been used as a accurate results and minimizing at the same time the incon-
probe to determine the pore structure of highly ordered posistency problems of PY and HNC.
rous material§3]. The samples of these materials exhibit a More realistic systems have also been considered using
narrow pore size distribution, but the determination of thesoft potentials. Thus, for instance, through grand canonical
pore geometry and size and the pore wall thickness are resimulations a system of repulsive alkanes confined in a
markably difficult problems. It has been shown that the usgorous medium was studied by Padilla and VEgka Theo-
of nitrogen as an adsorption probe combined with x-ray dif-retically, Padillaet al.[10] also extended the ROZ equations
fraction provides relevant information for the structural char-to associating fluids using Wertheim'’s statistical associating
acterization of these type of materials. fluid theory [11] to calculate structural properties and the
From a statistical mechanical standpoint, the problemadsorption isotherm of a dimerizing fluid inside a hard
posed by the adsorption of a fluid into a disordered matrix, osphere matrix. They solve the associative ROZ equations in
equivalently a gas inclusion in a quenched random substratéhe HNC and PY approximations that compare well with
can be mapped onto that of a general quenched-annealgdand canonical Monte Carl6GCMC) simulations. Also
mixture, a multicomponent system in which one of its con-phase separations have been studied by means of GCMC
stituents has its translational degrees-of-freedom frozen. Isimulations by Page and Monsofl2] and Alvarez,
this connection, the pioneering work of Madden and GlandLevesque, and Wejdl 3]. A theoretical approach devised by
[4] and the theoretically sound reformulation made by GiverRosinberget al. [14] was also put to test in this type of
and Stell[5], set a firm basis from which these problems canproblems with relative success.
be tackled with the standard tools of equilibrium statistical In this work we introduce an extension of ROZ equations
mechanics. Following Given and St¢B], it is possible to  to study the adsorption of a molecular fluid inside a porous
make use of Edward’s replica tridi6], and thus transform medium somewhat different in scope to the treatment of Pa-
our non-equilibrium mixture into a fully annealed multicom- dilla et al. [10]. Here we propose the treatment of the mo-
ponent system, in which, together with the matrix particles)ecular fluid, in this case a homonuclear hard diatomic, using
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the standard spherical harmonic expansion. This approachill label the matrix particles by 0, the fluid particles by 1,
has proved to be extremely successful in describing thand each of its— 1 noninteracting replicas as 2.

structure of linear molecular fluids in the framework of the  To deal with the orientational degrees of freedom of the
molecular Ornstein-Zernike equatigph5,16. The extension molecular species, we make the usual spherical harmonic
of the ROZ equations to molecular fluids is conceptuallyexpansion of the correlation functions. One explicitly has
straightforward and its practical implementation using the

spherical harmonic technique will be seen to be rather £90(r ) =t 1),

simple. The equations thus developed have been solved with
two different closures, the HNC and an appropriate extension
of the Verlet's modifiedVM) [17,18 approach.

As to thermodynamics, the calculation of the isothermal
compressibility is straightforward, and for the chemical po-
tential we have derived direct formulas both in the HNC and
in the VM approximations. Other quantities would have to 11 10, 01,) = VAT > 10, m(F12) Y1 m(@1),
be evaluated using appropriate reformulations of the expres- m 1
sions proposed by Rosinberg and co-workgtg,19, but
their explicit calculation is somewhat cumbersome and is not
considered here. In this work, a variety of systems with dif-
fe(ent qui'd and ma_ltrix densities and two different relative 3 1 -
fluid-matrix size ratios have been studied and both structural =4n |2 i, m(T 12 Y m(@1) Yi,m(@2),

Prig 02) = VA7 2, 15, 0(112) Vi m(@2),
2

fH(rp,01,07)

and thermodynamic results have been compared with exten- vz

sive GCMC simulation data. Our aim here is to investigate

the ability of the molecular version of the ROZ equations to f14rp,01,0,)

provide an adequate description of the adsorption behavior

of a standard model molecular fluid, namely, the diatomic =47 > 2 (r)Ym(0) Yi.m(ws),
hard dumbbell. It will be shown how this approach furnishes Iipum 2 M M T

a correct description of the structure and thermodynamics of

this type of systems and in particular how the influence otvheref is an arbitrary cor.relatipn funcFion. As usual, we will

the molecular shape can be elucidated from the results, ~€XPress our ROZ equations in Fourier space, denoting the
The rest of the paper is sketched as follows. In Secstransformed functions by. The OZ equation for the equili-

-1V, we introduce the ROZ equations for the present in-brateds+1 mixture after the expansion of the correlation

stance, the corresponding closure relations and the expreiinctions and the use of the orthogonality properties of the

sions derived for the calculation of the thermodynamic prop-spherical harmonics, transforms into

erties. Finally, in Sec. V, integral equation results are

presented and compared with simulation data. The most sig- ~ _

nificant conclusions are also commented upon therein. yﬁﬁm(k)=(—1)m; pME Cfllﬁm(k)[yfﬁzm(k)

3

II. THE ROZ EQUATIONS FOR A MOLECULAR FLUID +E|’\[|’ (K71 2
32

As mentioned before, we have extended the ROZ equa- ) . . . . -
tions to the case of a molecular fluid adsorbed into a disor- IS €quation can be rewritten in matrix form defining the
dered atomic matrix. Following the replica method guide-elementsFi°], ,,=f? ... Note that Eq.(2) is the general
lines[5], one first considers a completely equilibrated systenOZ equation for a molecular mixture. Now, once the limit
of s+1 species. Nows of them are replicated molecular s—0 is taken, one finally gets the ROZ equations for the
species and the other remaining species is atomic. Then, thgolecular fluid
Ornstein-Zernike equation for such a system reads

00300 , TO0F00
YE(r1p,01,07)

=; Pxf cM(ry3,01,03)[ Y*A(r32,03,0,)

OB 33,03, 02) 1dr g, M Hin= Gl Cn Gt (—1)"p0S”Ciy Con Gy
_(_1\m_  ~CA~ ~C

wherep, is the number density of specias and w; desig- (=17p1CrGmCrl.

nates the orientation of particiec®” is the direct correlation

function, andy®” the ir)direct corrglation func.tion'defineq by HE=CC +(—1)"p, G (CL)2, 3)

yB=g*—1—c*f, with g*# being the pair distribution

function between particles of type and 8. Hereafter, we where
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Gm=[1—(—1)"p,CE1 1 (4) n*P=a*Pe?t+0.8—0.45% 9
and
S0=1+poh® (5)

o
. o _ &= gp(xodgo+ x103), (10
The connected part of the correlation functions is defined by

f¢=f11— 12 Obviously, the matrix-matrix equation is com-
pletely decoupled and can be solved independently, while the

remaining coupled equations have to be solved simulta- A= 3
: . . . . . 00 3 3
neously in conjunction with their corresponding closure re- 4 p(Xodget X1d5q)
lations.
[ 1672 (Xod3o+ X, dG)? 1
Ill. THE CLOSURE RELATION Xl = -4
9(X5Co00+ 2XoX1Coo1t XCo11)
For the closure relation we have the usual expression
B B B B 3
h*P(12)=exd — Bu**(12) +h*’(12)—c*’(12) an=
4rp(Xod3,+x,d5,)
+bA(12)]- 1, (6) s e a
167“(Xodo; + X1d17)
X| —— 5 -1, (1)
where (12} (ryp,01,0,), b*?(12) is the bridge function, 9(XoCo01t 2%oX1Co11+X1C111)

andu®?(12) is the interaction potential between the species

a and B. In our case, we will be dealing with hard sphere A01= i
matrix speciesu®(r;,) =uys(ry) and hard diatomic fluid,
ut(r 5,01, 0,) =3 ubS(rsh), wherest denote the sites
andt in particles 1 and 2, respectively. Similarly, we will
have a fluid-matrix interaction(r ,,w;) = =utS(r$,) and
following the replica definitionsy'?=0. Note that the fluid- G 577 48
fluid, fluid-matrix, and replica-replica terms in E(§) have 00— T g 00
to be expanded in spherical harmonics and consequently one

has

wherei designates the species of smallest size. In (Ed)

m’ 3 2 | 43143
Coor= — 1—8(32d01_ 18dggdo; + doo)doos
A m(r2)=(exd — Bu*f(12) + h*F(12) - c*#(12)

2
+b*P(12)][111,m) = 81 1 m,000; @) Com=— %(32(131— 18d4,d3,+d3))d3,,

where we use(---|l;l,m) to denote the projection 5
of the exponential onto the spherical harmonics Coiie — 5lde
Y1, m(®1) Y, m(w2). For the bridge function, we have stud- 11

ied two different approximations: HNC, for whidbr*4(r ;)

=0V a,B, and an extension for mixtures of hard spheres ofwherep=py+ p; is the total number densitx, andx; are
the modified Verlet's approadf20,21] made by Henderson the matrix and fluid mole fractions, respectivetly, is the
et al.[17]. The latter was already used with success by Antenard sphere diameter, adg, is the equivalent sphere diam-
et al. [18] for a fully equilibrated mixture of hard spheres eter of the molecules

and hard dumbbells. The bridge function in this approxima-

tion has the form

(12

1 3 3 (1-9%)2
3 _"43 3 TR 2\ __ 1 *3

(8 (13

and here,y=d,/d,, d, andd, being the diameters of the

The set of parameterg®? are calculated following Refs. spheres forming the dumbbell, ahd=L/d,, L being the
[17,18 so thatb®?(0) are exact at low densities. Using an elongation of the molecule. Fal,, we have assumed addi-
appropriate notation for our system tive diameters, i.e.dg;=(dgo+dq7)/2. The above expres-

b*f(12)= ! —yaﬁ(lz)z
R TR
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sions apply to a binary mixture and consequently account for 2. Chemical potential

the matrix-matrix, matrix-fluid, and fluid-fluid correlations. Following Lee’s star function metho22], we have de-

As to the replica-replica bridge function, in R¢8] it was  \eioned a direct expression to calculate the chemical poten-
found that it |slp2)ract|cally negligible. Consequently we haveiy of the fluid that bypasses cumbersome thermodynamic
here assumeld~"=0. integrations. It can be shown that the excess chemical poten-

tial of component 1 of a molecular mixture is given [28],
IV. THERMODYNAMIC PROPERTIES

A full account of the thermodynamics of the quenched-
annealed mixtures can be found in the work of Rosinberg s« 2 Pvf drdw;dw,
et al. [14]. Here, we have focused on two thermodynamic
properties of the fluid that can be evaluated in a straightfor-

‘yly(rvwl1w2)+blv(r1wlyw2)

ward way in the framework of integral equation theory, . 1 .
namely, the isothermal compressibility and the chemical po- Y (rwy,07)+ Sh7(r 01,02) ¥ (1,01, 02)
tential.

1. Isothermal compressibility +hl”(r,wl,wz)bl”(r,wl,wz) -S5,, (16)

The isothermal compressibility of a fluid inside a matrix
is given by the expression
where the star serieS" is given by[22]

JP4
ﬁ — =1- plf drdwldwzcc(r,wl,wz). (14)
T

r?pl 1
N h™(r,o1,w3) (¥ ,
S, = fd h—f dy b (r, 0y, w559 ).
Y (rvwlva) 0
17

where c¢(r)=c*(r)—c'¥r) is the connected part of the
fluid-fluid direct correlation function. In the case of the mo-
lecular fluid, integration over the orientational degrees of
freedom leads to Following again the steps of the replica method, we first
consider an equilibratest- 1 mixture and then take the limit
s—0 to obtain the expression for the partially quenched sys-

,8 — = 1—47-rp1jdrrzcgoo(r). (150  tem. After expanding the correlation functions in a spherical
apl T harmonic basis, the final expression reads
) - 1 1 h'%r, ;)
Bri=po| ~Cood )+ 5 f dr 2 hioovioot 7 f drdo,b*\r,0p) [N, @) +1]- 7 f drdeor o
1

710 , , - 1
Xfo dy" 1% y" % |+ py| —Cg5e(0) + EJ dr Em hIlI2m7I12m w[ drdwdw,b™(r, 0y, 0,)
hr,w,,0
X1, 0y, 0,)+ 1 drdwldwzg dy' My 11| - p,| —CE240)+ = f
yH(rwy,wy) o
X D hi2 412 +if drdw;dw,b4(r, w;,w,)[h¥ drdew;de
(o alzmYglom (4m)?2 10w; 101,02 ; - 10w?
h2(r, 0,0 12
# ’ dy’”b“[y’”]], (18)
Y (rvwlin) 0
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FIG. 1. Center-to-center fluid-fluid correlation

ty)

1
€000

0 | L | L

functions with size ratiogy,/d,=3 and densities
pod3=0.0275 andp,d3=0.1605. Simulation re-
sults are denoted by circles, and integral equation
data are represented by solidM) and dashed
(HNC) curves.

r/da

where we have taken into account tlpat= p,. This general

expression is now to be written for the particular approxima-

P
f d,y/aﬁb[,yraﬁ;r]
0

tion used for the bridge function. Thus, when HNC is used,

since the bridge function vanishes for all the interactions, the

excess chemical potential expression is reduced to

Bu1=po| —Cood 0) + fdrz oo?’lloo

h|1|

2m Illzm}

—Cod 0)+ f dr >

—Cood 0)+ f dr 2 hi3 J,m?’ |1|2m}
19

In the VM approximation, the functional integration over
y can be explicitly performed to give

1
————[(1+ p*Py*F)2—4(1+ 5P yF)
4( k)3

+2 log(1+ n*Py*B)+3]. (20

Additionally, the last two terms in Eq(18) are to be
dropped when the replica-replica bridge functibf?, is ne-
glected.

From a numerical standpoint, one has to recall that in Eq.
(18) y*P(r1,, w1, w,) andh®A(r,, w4 ,w,) have to be recon-
structed from the spherical harmonic expansion. Whereas the
yA(ri,,01,w,) expansion is rapidly convergent,
h*A(r 15, w,,w,) Must be evaluated from the closure expres-

FIG. 2. Center-to-center fluid-fluideft) and
fluid-matrix (right) correlation functions for a
fixed matrix densityp,d3=0.2 and three increas-
ing fluid densities,pldgz0.1289,0.1847,0.2696.
The size ratio here is 1. Solid curves represent the
VM solutions, and the circles stand for the simu-
lation data.
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2 e
3 -
]
. L FIG. 3. Center-to-center fluid-fluideft) and
=T = fluid-matrix (right) correlation functions for a
- g s & fixed matrix densityp,d3=0.025 and three in-
b= bl creasing fluid densitiesp,d3=0.0478,0.1276,
| 0.1824. The size ratio here is 3. Labels as in
s Fig. 2.
05k
0 0

2
r/da

sions(6) and(8). Finally, the full chemical potentia3u, is  semble simulation of a hard sphere system at depgiin a

given by cube of volumeV with periodic boundary conditions. The
equilibrium state of the fluid at chemical potential and

Bui=logpi+Buy. (21) fixed matrix configuration is then obtained via GCMC simu-

lation [24] with the three types of trial moves were per-
V. RESULTS AND CONCLUSIONS formed (displacement, creation or deletjorandomly with

equal probability. Average over disorder involved between 4

The ROZ equations have been solved with the standargnd 15 matrix configurations depends on the thermodynamic

procedure devised by Lada5], with r space discretized into . . . .
1024 points and a grid size dfr —0.02i, . The expansions state. For each matrix configuration aboutx1®’ trial

- . moves were performed after equilibration. The volume of the

have been truncated at the coefficiefiig,. A variety of . . 3 . .

fluid, matrix densities, and two different size ratiak,{/d, S|mulat|on3box w3as/= 100ad, for thg size 3rat|od00/da=l

—1 and dgy/d,=3) have been studied in the HNC. VM @nd 320@; (pod;=0.025) or 2908, (pod,=0.0275) for

approximations and these results are compared with oufiZe ratio 3.

GCMC simulation results. The elongation of the fluid par- In Fig. 1 we show the center-to-center correlation func-

ticles has been set th=0.6d,, a value characteristic of tion (i.e., gab) for the fluid-fluid correlation in the two ap-

molecules like G and Bk. proximations together with simulation data. This case corre-
Typically a simulation run starts by selecting randomly asponds todg/d,=3, podgz 0.0275, andpld§:0.1605, a

configuration of the matrix generated in a canonical enstate point where the differences between both approxima-

1.5 3

[ ]
o

FIG. 4. Atom-atom (left) and atom-matrix
(right) distribution functions for the same matrix
and fluid densities as in Fig. 2. Labels as in
Fig. 2.

=) gatom—atom(r)
L]
gatom—matrix(r

n
|
—_

r/da r/da
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6

~

FIG. 5. Atom-atom (left) and atom-matrix
(right) distribution functions for the same matrix
and fluid densities as in Fig. 3. Labels as in
Fig. 2.

gatom—atom(r)

—_

gatom—matrix(r)

(3]

(=]

M T
0 3
r/da r/da

tions are more significant. In all cases, the VM improvesthe fluid density is augmented. In the simulation results there
upon the HNC, specially as to the height of the first peak andeems to be only a hint of this splitting that is perhaps over-

the shift in the phase of the correlation function, which areemphasized by the integral equation.

well known to be poorly accounted for in the HNC approxi- In Figs. 4 and 5 we show results for the site-site correla-

mation. In what follows we will present the structural prop- tion functions for the same cases as before. These functions
erties only in the VM approach, since differences with theare calculated from the molecular pair distribution functions

HNC are less appreciable. by means of25]
In Figs. 2 and 3 we again depict the center-to-center dis-
tribution function, now for the fluid-fluid and fluid-matrix 1
intergctions for increasing fluid density and a fixed matrix ggg(r)= 2J J j dRydw,dw, exd — Bu?°(1,2)
density. (4m)

Figure 2 corresponds to the size ratlg,/d,=1, podg
=0.2, andp,d>=0.1289,0.1847,0.2696 and, Fig. &o/d,
=3, pod3=0.025, andp,d3=0.0478,0.1276,0.1824. The —l1(@1) =), (22)

VM approximation proves to be remarkably accurate, spe-

cially for the fluid-fluid correlations. The fluid-matrix distri- wherea andg are the atomic sites angand 6 designate the
bution functions present some peculiarities for the largesspecies. Alsd;, defines the location of the site in particle
size ratio. As can be seen in Fig. 3, the first coordination and Rq,, is the center-to-center vector between the par-
shell splits into two sharp peaks. This splitting increases a#icles. In the figures, we denote these function©gRY matom

+h7%(12) —c?%(12)+b7°(12) ]8R+ | 5( @)

0.2

FIG. 6. Radial dependence of the orientational
order function. Herep0d§=0.2 and the three in-
creasing fluid densities arep1d§=0.1289,
0.1847,0.2696 with size ratidgy/d,=1. Labels
as in Fig. 2.
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TABLE I. Isothermal compressibility and chemical potential for HNC and VM approximations vs GCMC
simulations for a hard dumbbell fluid adsorbed in a hard sphere disordered matrix. The size ratio here is
dgo/d,=1. Fluid densities result from the GCMC calculation and are used as input data in the theory.

pod3 p.d3 BIP113py(HNC)  BaP1/dp1(VM)  Bu (GCMC)  Bu (HNC)  Bu (VM)
0.05 0.05490.0001 1.641 1.651 -2 -1.992 -2.001
0.05 0.092%0.0001 2.237 2.272 -1 -0.974 -1.002
0.05 0.133%0.0002 3.087 3.192 0 0.066 0.001
0.05 0.15430.0002 3.600 3.762 0.5 0.598 0.505
0.05 0.174Z20.0001 4.164 4.400 1 1.138 1.010
0.05 0.21120.0001 5.423 5.857 2 2.243 2.023
0.05 0.27410.0002 8.374 9.413 4 4.562 4.092
0.05 0.3233%0.0004 11.694 13.562 6 6.965 6.180
0.05 0.362%0.0004 15.285 18.145 8 9.451 8.284
0.10 0.04210.0002 1.537 1.547 -2 -1.978 -1.995
0.10 0.073%0.0001 2.049 2.083 -1 -0.961 -0.997
0.10  0.129%0.0002 3.267 3.405 0.5 0.620 0.513
0.10 0.183%0.0003 4.935 5.310 2 2.267 2.040
0.10  0.24480.0002 7.667 8.577 4 4.577 4.108
0.10  0.29280.0002 10.758 12.398 6 6.962 6.181
0.10  0.3326:0.0002 14.164 16.652 8 9.461 8.281
0.20 0.0211*0.0002 1.343 1.354 -2 -1.957 -2.010
0.20 0.0411*0.0003 1.695 1.723 -1 -0.927 -1.004
0.20 0.06820.0002 2.246 2.314 0 0.126 0.005
0.20  0.128%0.0003 3.913 4.175 2 2.297 2.031
0.20  0.184%#0.0003 6.181 6.836 4 4.594 4.100
0.20  0.23120.0004 8.863 10.087 6 6.998 6.197
0.20  0.2696:0.0006 11.827 13.811 8 9.475 8.346
0.30 0.0780.001 2.932 3.104 2 2.383 2.032
0.30 0.168-0.001 6.859 7.690 6 7.042 6.170

whena and 8 belong to dumbbells, angl o mmatrix When« 1

belongs to a dumbbell anél to a matrix particle. (P2(c0osb19))(r)= zf dridewidw;

Again the VM approximation is remarkably accurate for (4)
most cases. Only for the highest fluid densities, deviations X (12, 01,w5)Po(COSO,), (23)
with respect to the simulation become significésee Fig.

5).

_In Fig. 6, we present, again for three different fluid den-\\hich can be expressed in terms of the spherical harmonic
sities and a fixed matrix density, the radial dependence of th@oefﬁcients as
orientational order function,

TABLE Il. Isothermal compressibility and chemical potential for HNC and VM approximations and
GCMC simulation of a hard dumbbell fluid adsorbed in a hard sphere matrix. The size ratio here is
dgo/d,=3. Fluid densities result from the GCMC calculation and are used as input data in the theory.

pods pad; BIP11dpy(HNC)  BdP1/dpy(VM)  Bu (GCMC)  Bu (HNC)  Bu (VM)

0.025 0.04780.0001 2.160 2.477 0 0.476 0.082
0.025 0.0895 0.0002 3.525 4.223 2 2.849 2.231
0.025 0.1276:0.0002 5.325 6.559 4 5.380 4.435
0.025 0.1594:0.0002 7.431 9.289 6 8.035 6.672
0.025 0.1824:0.0006 9.431 11.911 8 10.405 8.657
0.0275 0.038%0.0002 2.013 2.332 0 0.605 0.105
0.0275 0.0756:0.0002 3.219 3.943 2 3.002 2.267
0.0275 0.109&0.0002 4.877 6.092 4 5.556 4.480
0.0275 0.139%10.0002 6.781 8.598 6 8.197 6.715
0.0275 0.160%0.0004 8.581 10.987 8 10.527 8.674
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9.5

6.5

FIG. 7. Fluid chemical potential vs density for
various matrix densities and size ratios. Circles
correspond to GCMC data, and dahsed and solid
curves to HNC and VM integral equation data.
Note the big discrepancies of the HNC results for
the largest size ratio.

0.5

-2.5

1 molecular shape on the adsorption isotherms. This can be
<P2(C05912)>(f)=<2(3 co$ 6, 1)> seen in Fig. &) where we have plottegk; vs p;d3 for
various elongations ranging from plain hard sphered to
=d,. Simulation results are only presented for hard spheres
and forL=0.6d,. One immediately sees that there is a con-
siderable rise in the chemical potential as the elongation in-
creases. To some extent this can be attributed to a simple

As regards thermodynamics, in Tables | and and || Wevolume effect, since the work required to insert a particle in

present our results for the isothermal compressibility anc}he sample augments as the volume of the particle is in-
chemical potential. This latter quantity is also plotted in Fig,cr€ased. In order to separate more clearly \3/olume and shape
7, and compared with the GCMC simulation data, for which€ffects in Fig. 8b) we have plotted., vs p,dy,, wheredy,

the chemical potential is an input value. Here, the improvels the equivalent diameter defined in Ed3) . Thus the
ment of the VM with respect to the HNC is much more quantity p;d3; is proportional to the fraction of volume oc-
significant than in the structural properties. The HNC ap-cupied by the fluid particles. Again we see that the chemical
proximation seems to always overestimate the chemical pgpotential grows as the elongation is increagaithough to a
tential whereas the VM performs rather well for all the den-lesser extent than when the plain number density is used in
sity range. Finally we have analyzed the effect of thethe abscissaeObviously this is due to the fact that the ex-

1
= g[gzzo(rlz) —20201(r12) + 202241 12) ]

(29

FIG. 8. (a) Fluid chemical potential vs density
for elongations./d,=0,0.2,0.4,0.6,0.8,1.(from
bottom to top, pod>=0.0275 anddgy/d,=3,
calculated in the VM approximatiofsolid lineg
and GCMC simulatior(circles. (b) Same aga)
but the abscissas represent the density in terms of
the diameter of the equivalent sphere, i.e., is pro-
portional to the net fraction of volume occupied
by the fluid.

H

0.1 0.2 0.3 0.4
3
Py deq
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cluded volume of a hard dumbbell is somewhat larger thamate description of the behavior of molecular fluids adsorbed
the excluded volume of the equivalent sphere, and this is aim quenched atomic random matrices. Moreover, the fact that
evident shape effect. It should be mentioned here that inlirect expressions can be derived for the chemical potential
agreement with the findings of Ford, Thompson, and Glandin this approach make it amenable to introduce self-
[26] very similar results are obtained for a fully annealedconsistent approaches like the one proposed by Fernaud,
system. This we have checked performing HNC and VMLomba, and Leg8].
calculations for equilibrium mixtures of both size ratios, ob-  Future work will focus on the implementation of self-
taining results hardly distinguishable from those of theconsistent closures as well as the description of more realis-
guenched systems. When the matrix particles are much bidic systems, incorporating Lennard-Jones interactions. In this
ger than the fluid particles this is a consequence of the simiatter case, one of the most relevant aspect is the gas-liquid
larity of the correlation functions as found in R¢27], but  transitions, whose location by computer simulation remains a
even when correlations are different thermodynamic properformidable tas 12,13 and consequently, an accurate inte-
ties remain very similaf26]. This seems to be a general gral equation theory may well prove to be a valid alternative.
feature in this type of adsorption problems, although the
presence of attractive forces tends to make the quenched and
annealed systems more dissimi[28].

In summary, we find here that the extension of the VM  This work was financed in part by the DirecaiGeneral
approximation that proved successful for mixtures of mo-de Enséanza Superior e InvestigacioCientfica under
lecular and atomic fluids, is equally able to provide an accuGrant No. PB 97-0258-C02-02.
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